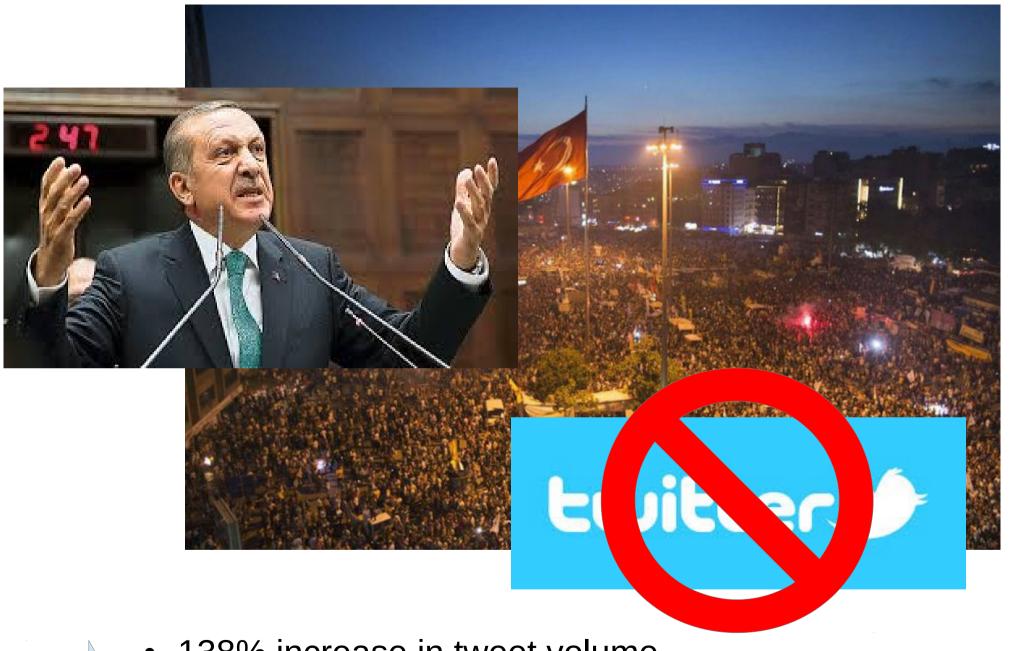
Climate change and online social networks

Hywel Williams 7th May 2014

Content

- Collective behaviour & online social data
- Social network analysis of online climate debate
- Comment on "big data"

Taksim Square, Istanbul -15th June 2013

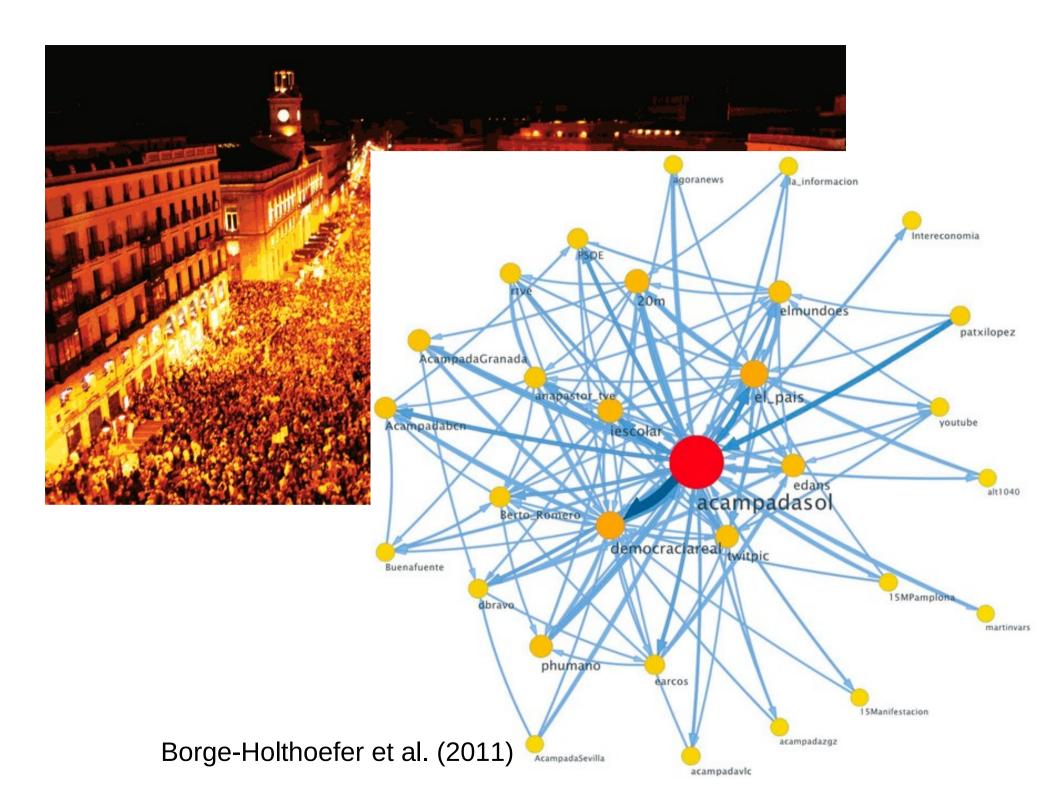


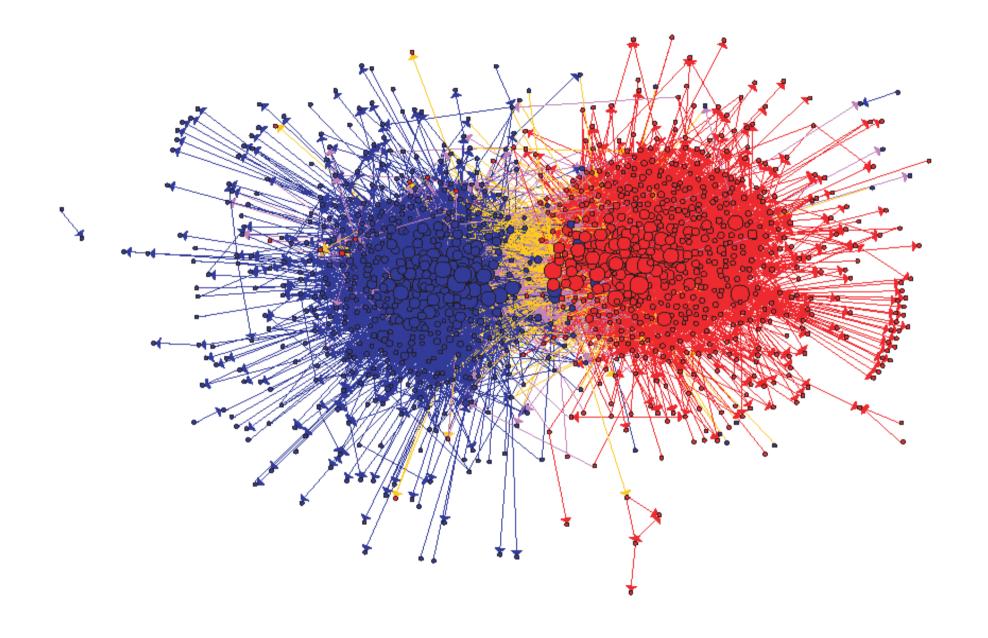
• #TwitterisblockedinTurkey trends globally

Social media 101: Erdogan's lesson

- Important communication channel(s)
- Relevant to "real-world" and offline political processes
- Decentralised
 - Many-to-many
 - No "centre"
 - No top-down control
 - Robust to interference

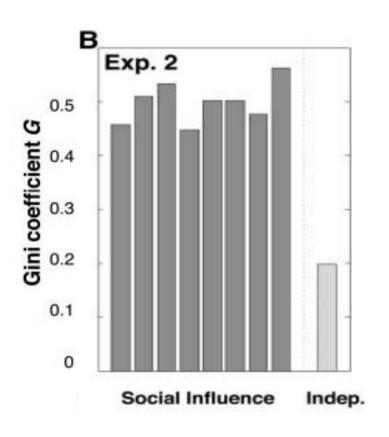
Plaza del Sol, Madrid, 21st May 2011

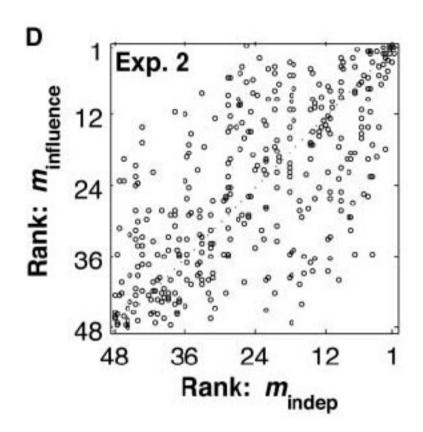




Adamic & Glance (2005)

Social influence affects opinions

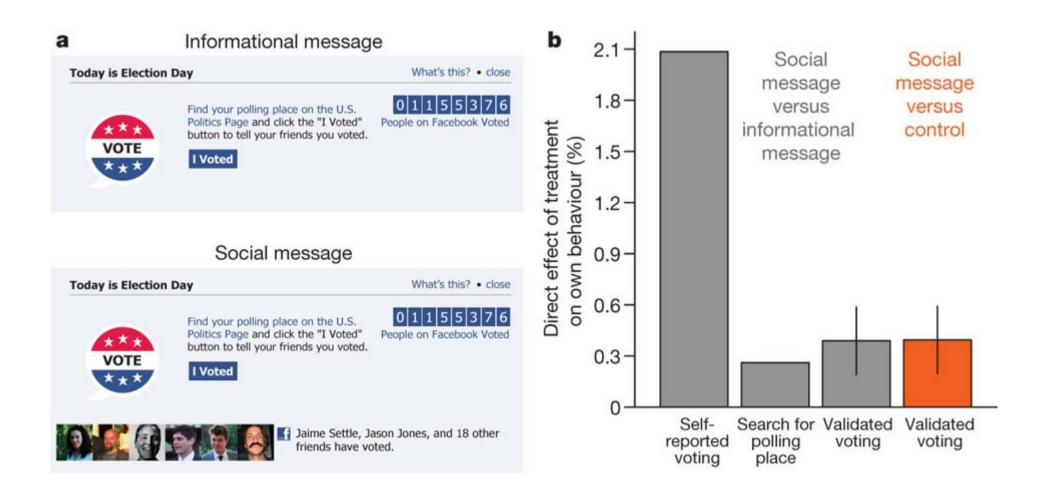


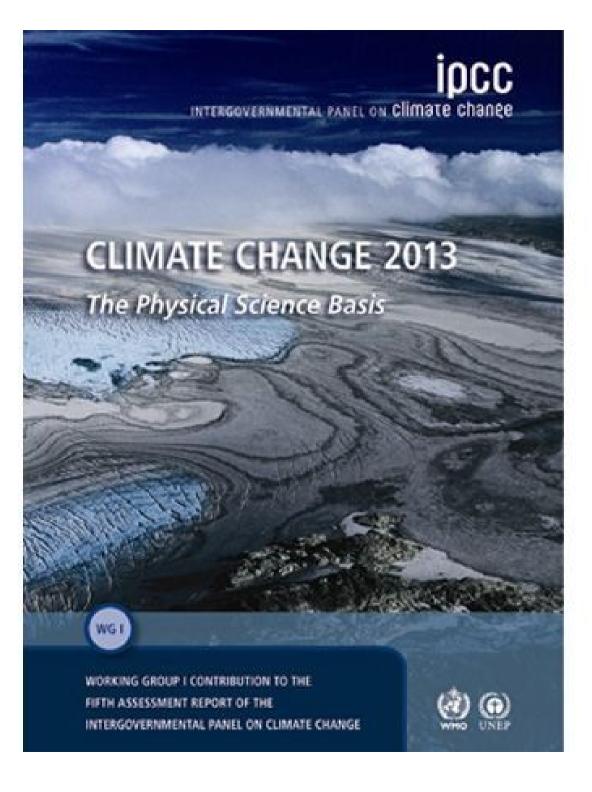


Artificial music market experiment (Salganik et al, 2006):

- Independent choice: Songs shown in random order.
- Social influence: Show number of downloads, order by popularity.

Social influence affects behaviours





Attitudes to climate change: the "Six Americas"

Highest Belief in Global Warming Most Concerned Most Motivated

Proportion represented by area

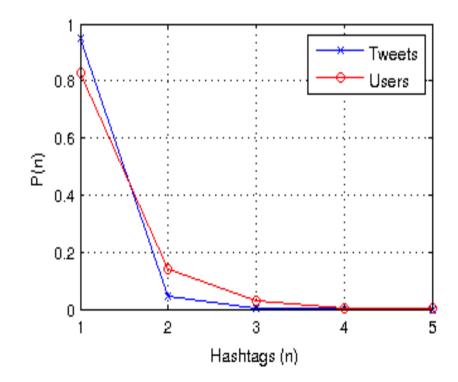
Source: Yale / George Mason University

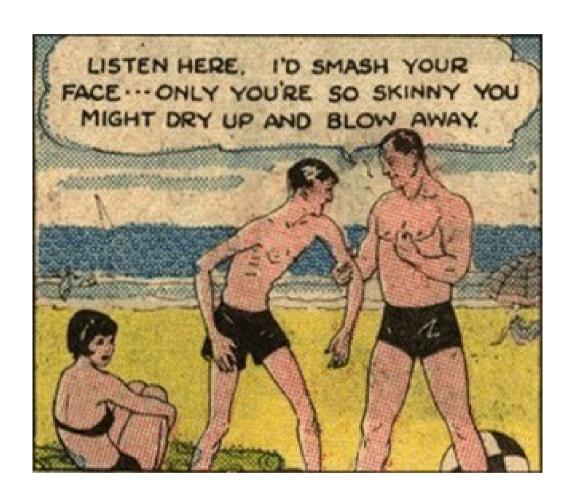
Lowest Belief in Global Warming Least Concerned Least Motivated

Twitter dataset collected Jan-May 2013

Hashtag	Total tweets	Retweets		Mentions		Links		Unique users
		count	% total	count	% total	count	% total	Offique users
#globalwarming	92190	21475	23.29	17226	18.69	43864	47.58	56517
#climatechange	230753	93618	40.57	52363	22.69	163069	70.67	86366
#agw	16987	4599	27.07	4238	24.95	13306	78.33	3115
#climate	280076	118008	42.13	61545	21.97	236200	84.33	70011
#climaterealists	1427	254	17.80	31	2.17	1411	98.88	208
All hashtags	590608	230120	38.96	129342	21.90	431340	73.03	179180

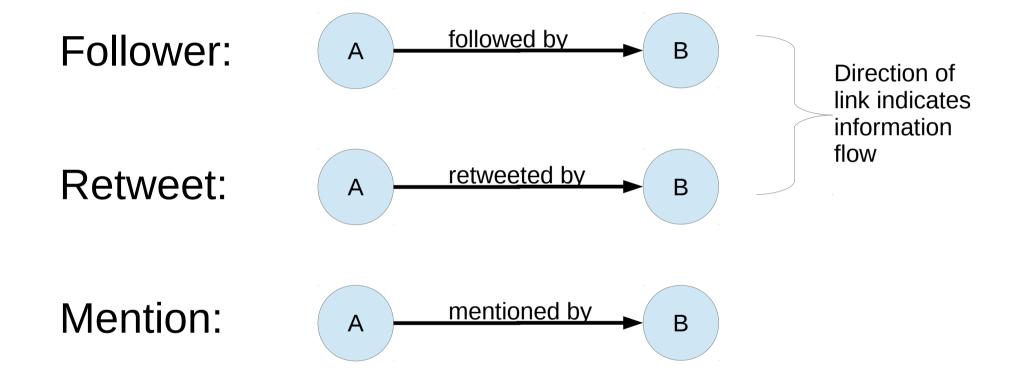
- Five climate-related "hashtags"
- Counted retweets, mentions, links, unique users





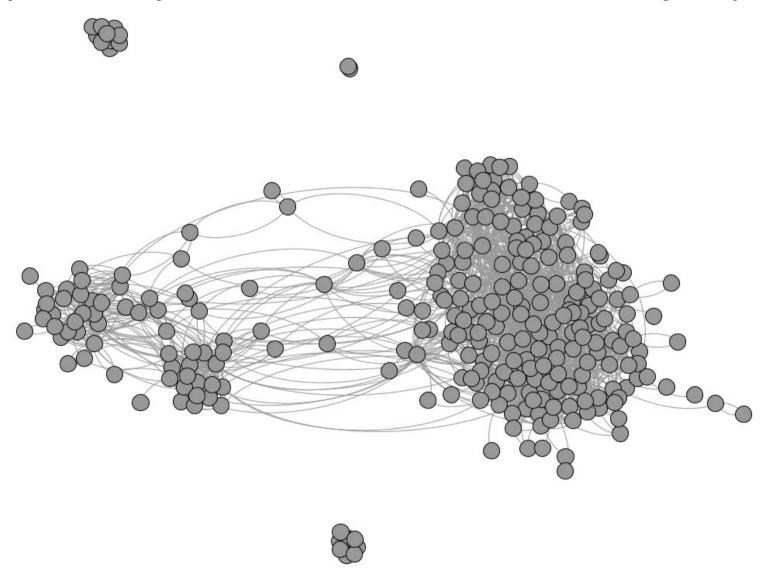
Is it big enough?

Three forms of interaction

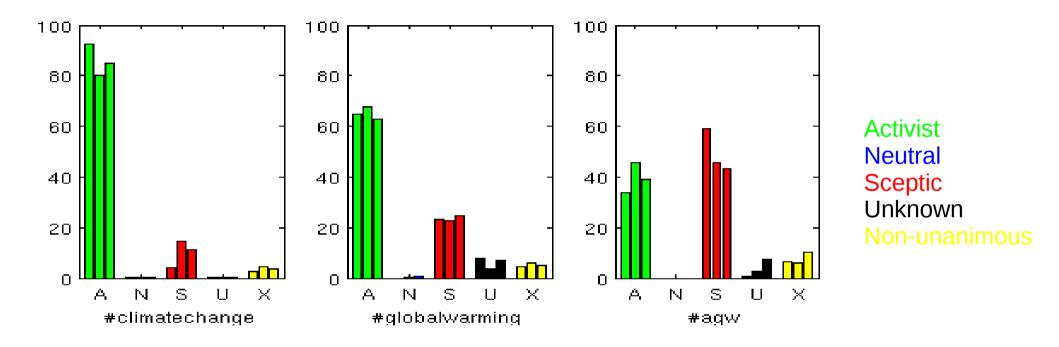


Follower network: #globalwarming

(filtered by tweets/user, force-directed layout)

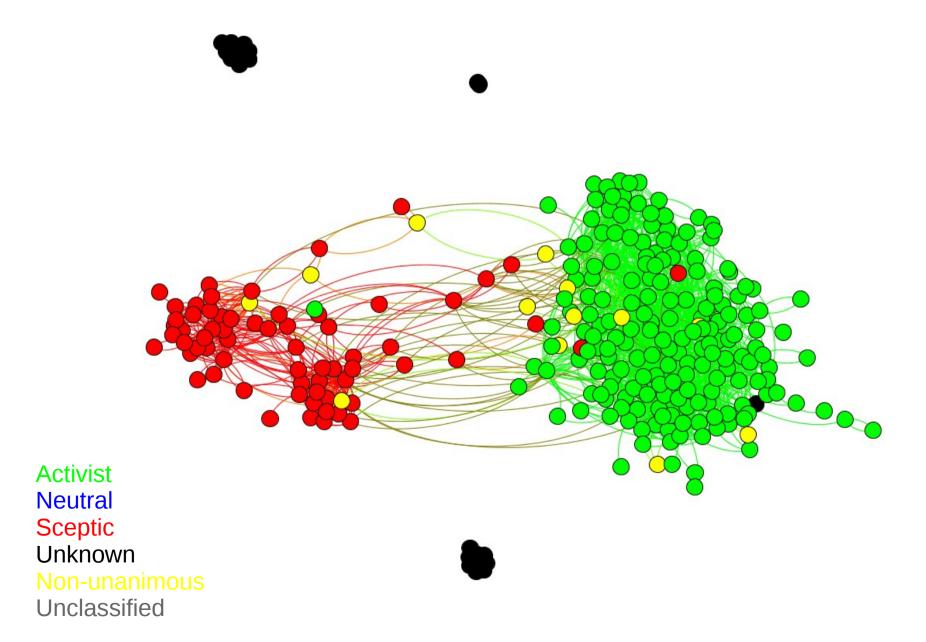


Classification of user attitudes

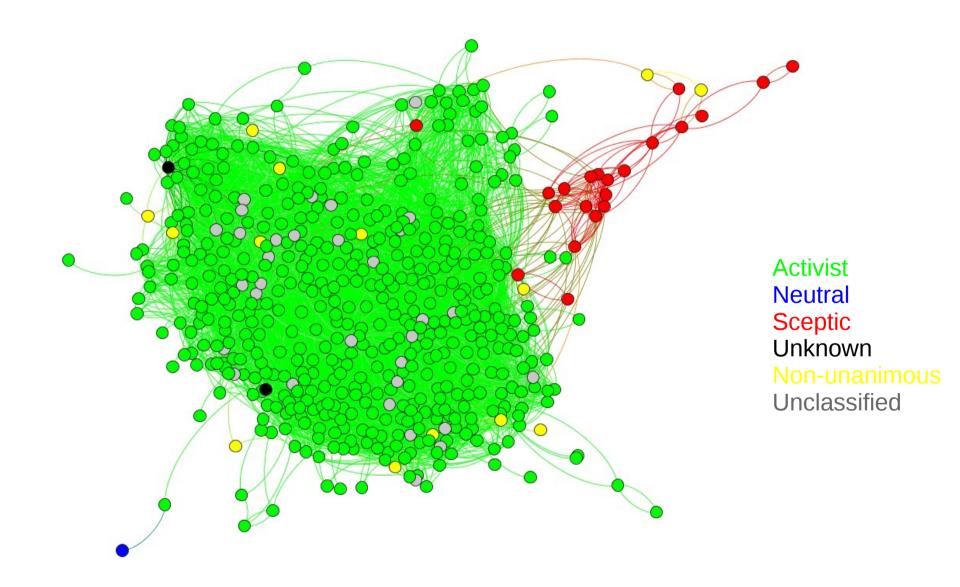


- Panel of 3 climate change PhD students classified users (n=1545) from profiles and tweets:
 - Activist: supporting mainstream climate science and/or promoting climate-friendly policies
 - **Neutral**: expressing a view on climate change, but not obviously activist or sceptic
 - **Sceptic:** contrarian view on climate science and/or critical of climate-friendly policies
 - Unknown: no view or attitude on climate change could be distinguished
- Only accept unanimous classifications

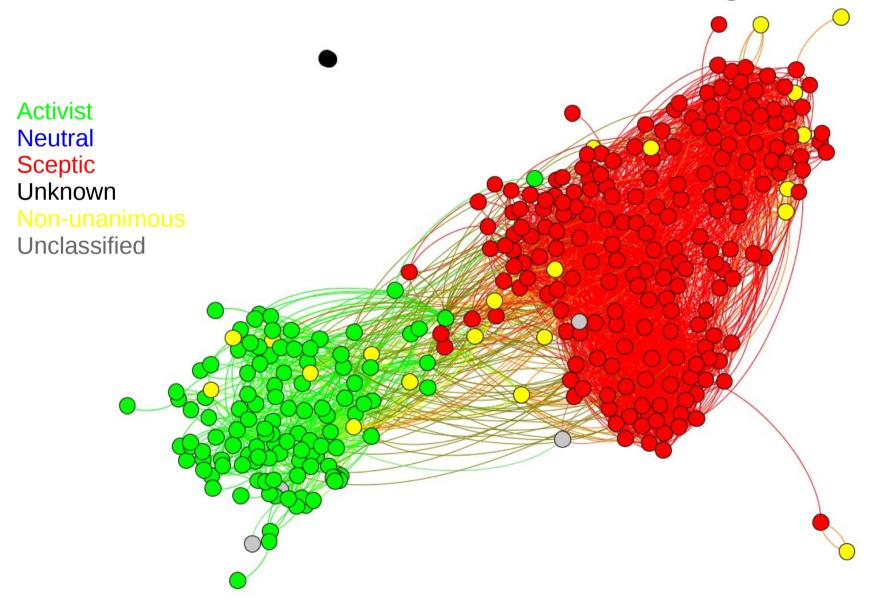
Follower network: #globalwarming



Follower network: #climatechange

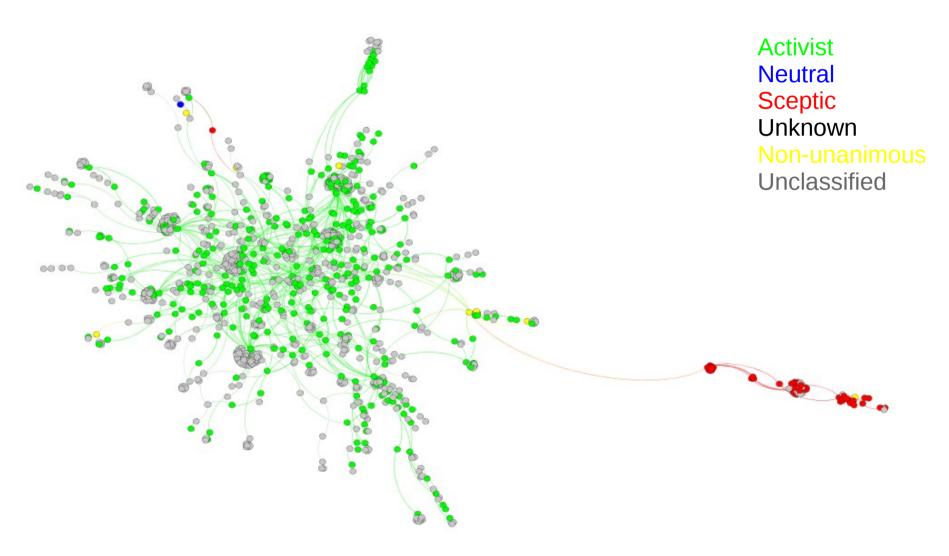


Follower network: #agw

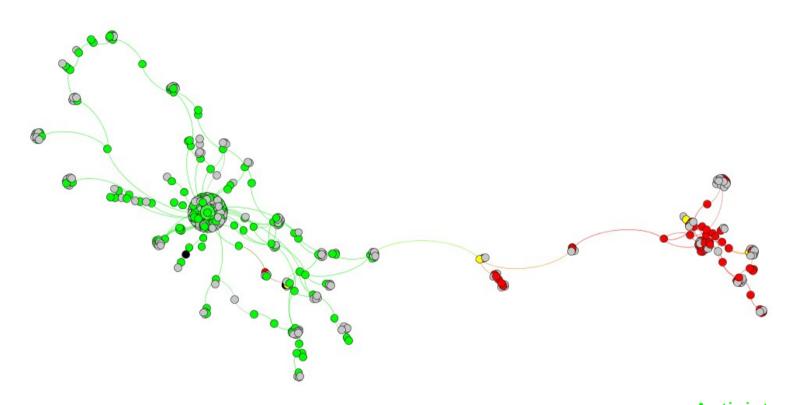


Retweet network: #climatechange

(filtered by edge-weight, force-directed layout)

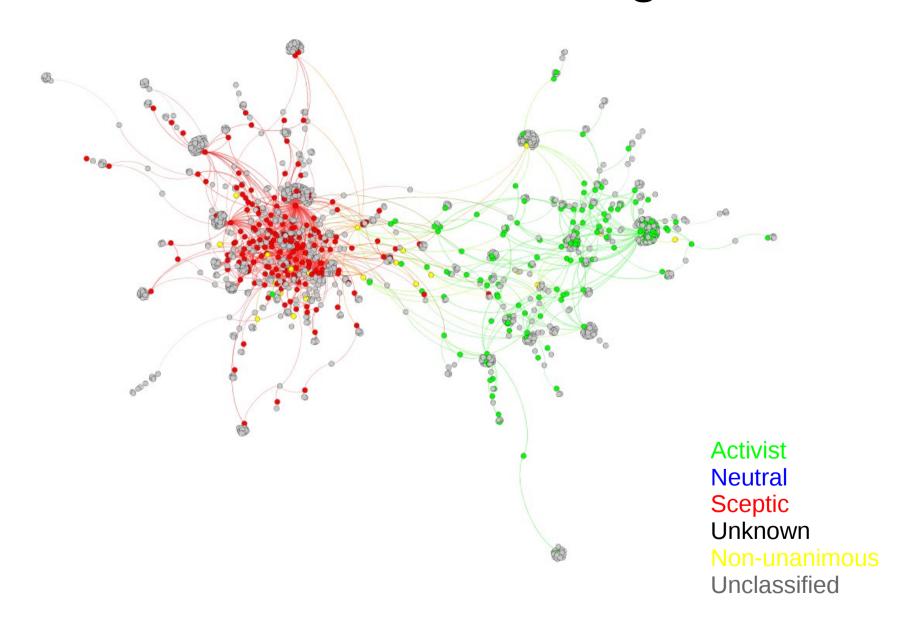


Retweet network: #globalwarming



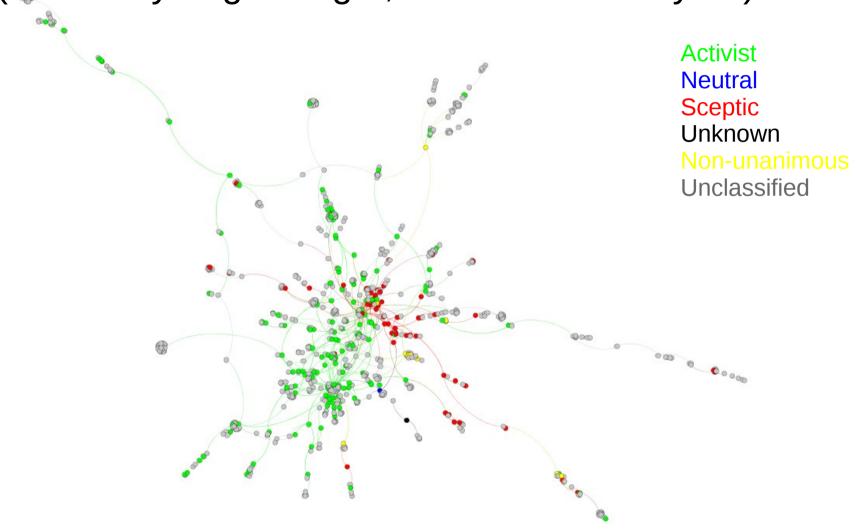
Activist
Neutral
Sceptic
Unknown
Non-unanimous
Unclassified

Retweet network: #agw

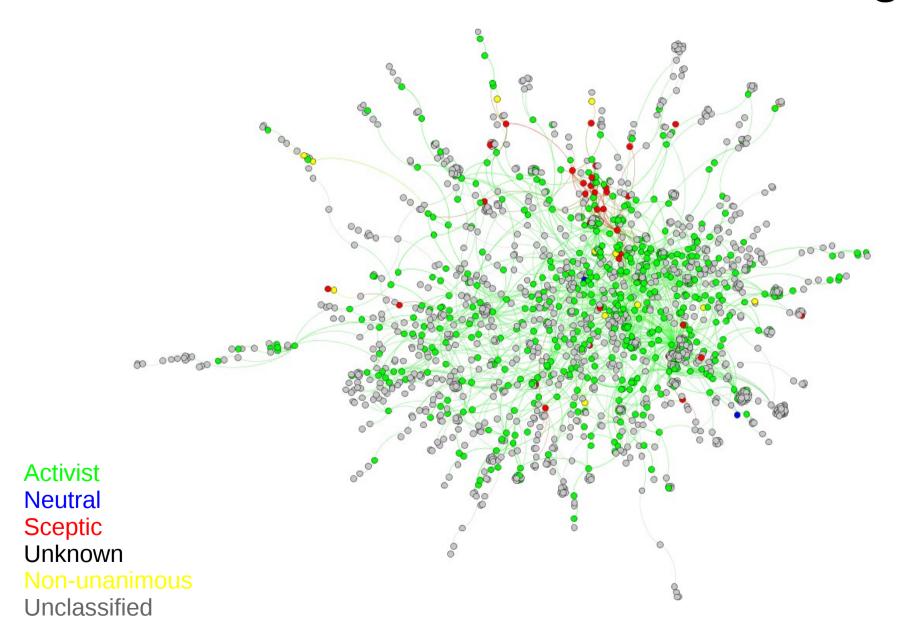


Mention network: #globalwarming

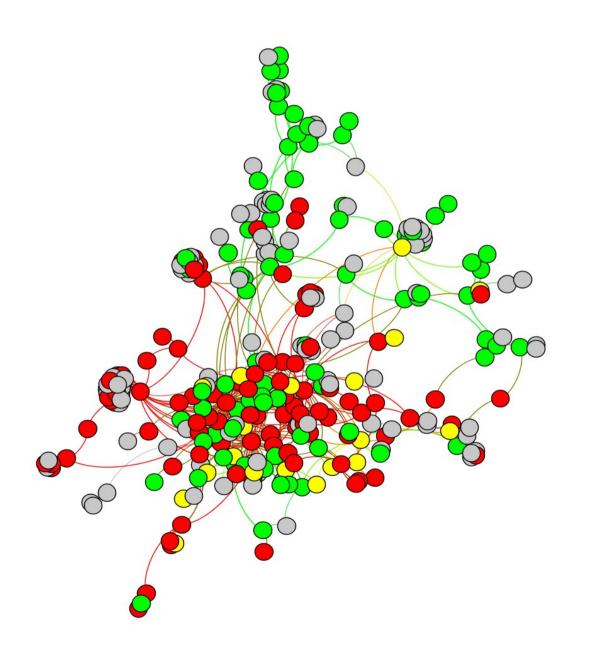
(filtered by edge-weight, force-directed layout)



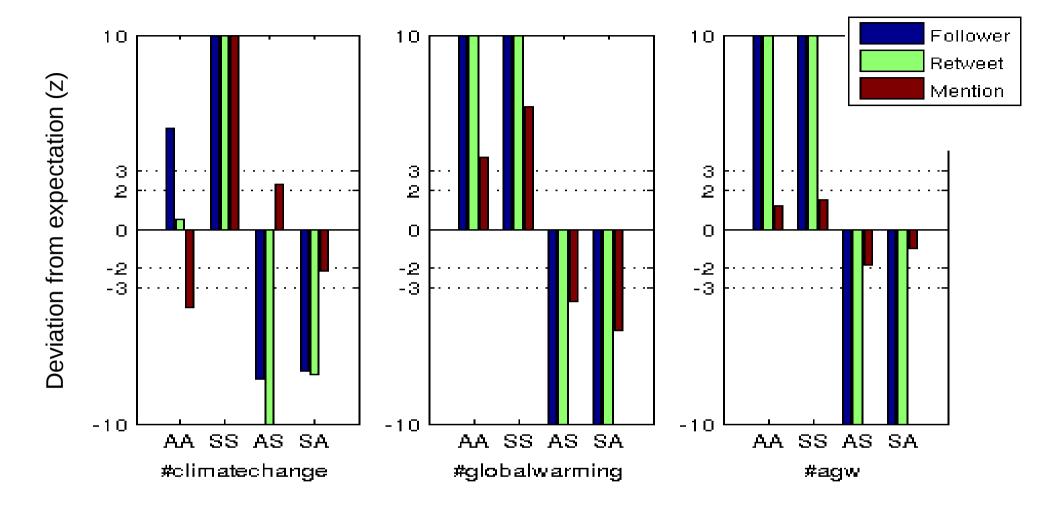
Mention network: #climatechange



Mention network: #agw



Activist
Neutral
Sceptic
Unknown
Non-unanimous
Unclassified

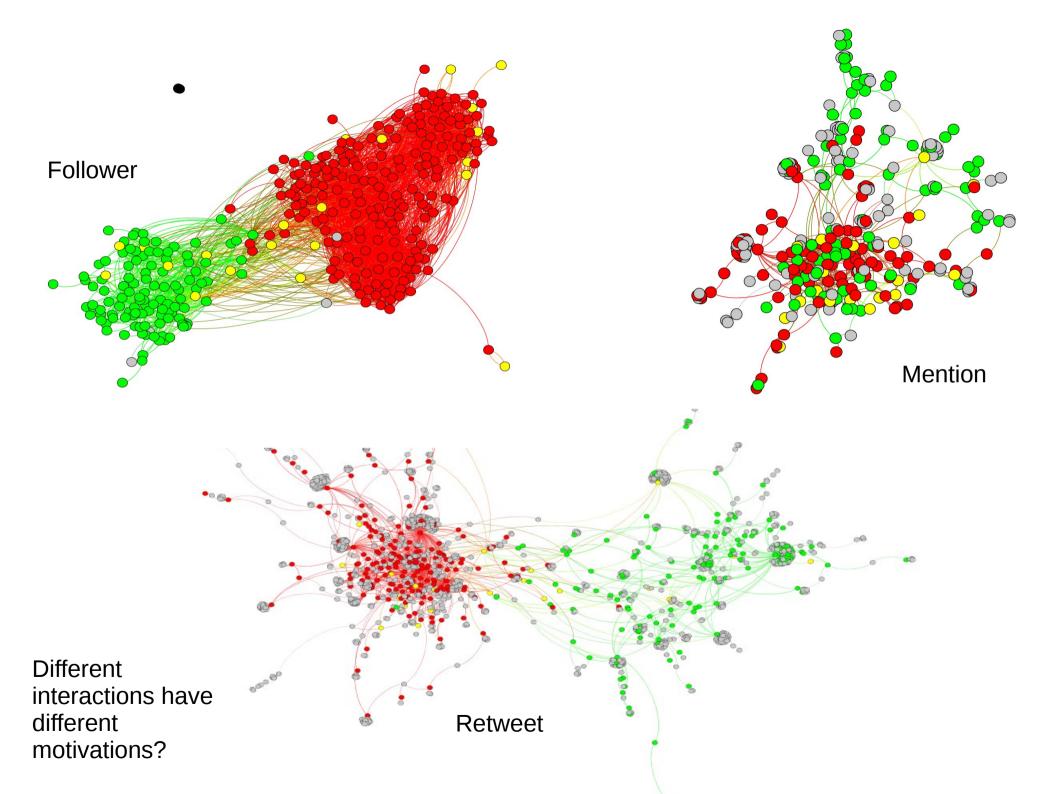


Bootstrap method:

Homophily: Positive z-scores for AA & SS, negative AS & SA.

Significance: $|z|>2 \rightarrow p<0.05$, $|z|>3 \rightarrow p<0.003$.

Strong significant homophily for followership and retweets. Mixed signal for mentions.

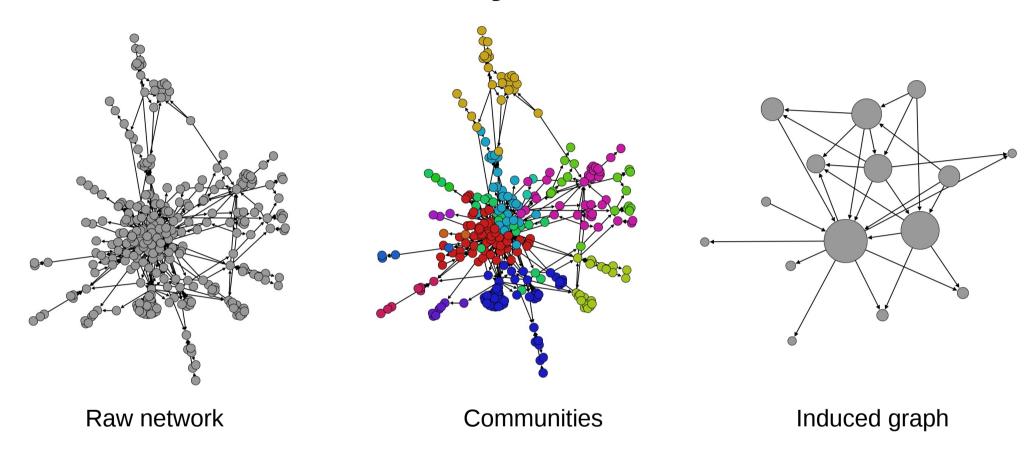


British youth subcultures. The Guardian, 20th March 2014.

Metallers, goth, Molly Soda, haul girl, seapunks.

Followership, retweeting → approval/endorsement? Mention → context dependent

Community detection

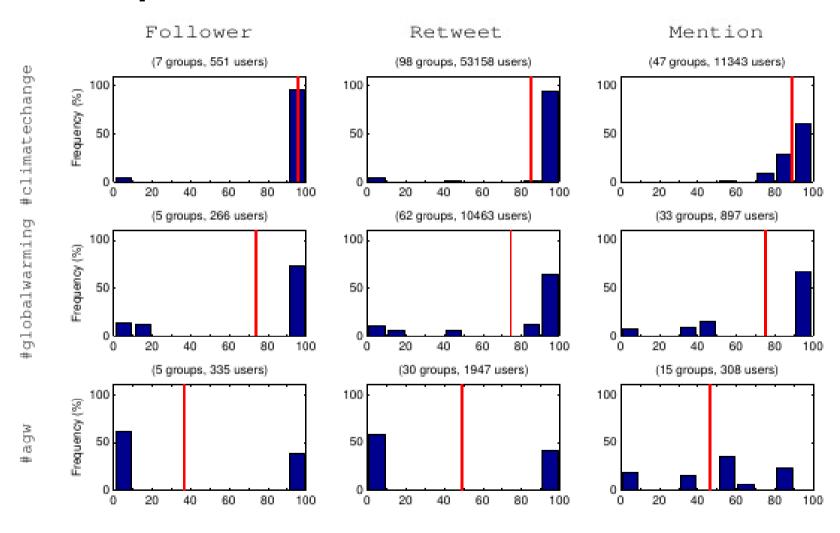


Use Louvain method (*) to **partition** nodes into distinct communities such that **modularity** (**) is maximised. Draw **induced graph** representing each community as a single node.

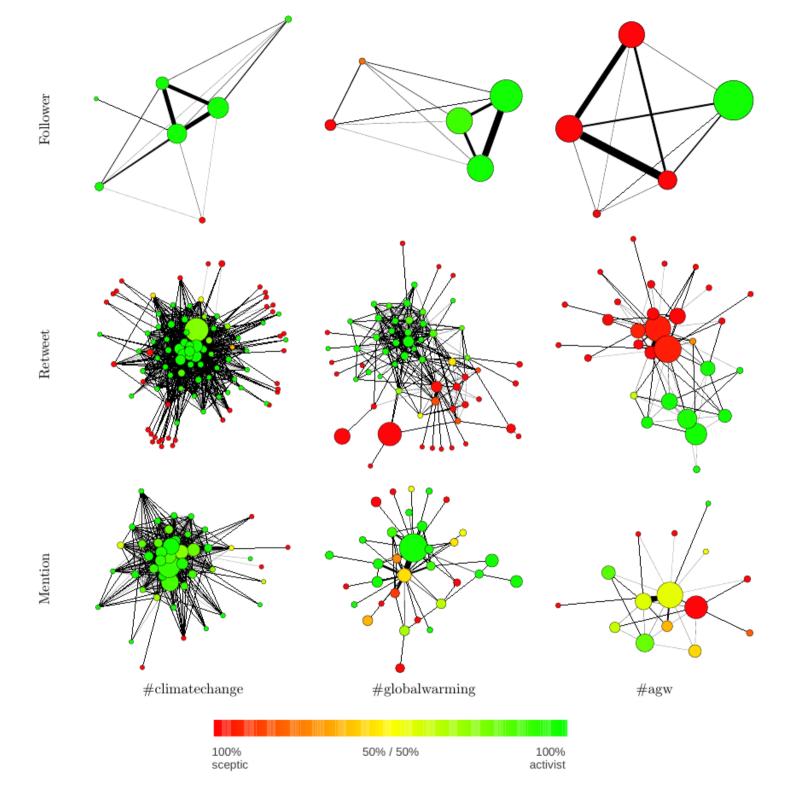
(**) Modularity: high when all edges fall within groups, low when edges fall between groups.

^(*) Initialise with each node in its own community. Sequentially merge neighbouring communities if doing so will increase overall modularity, until no further increase is possible.

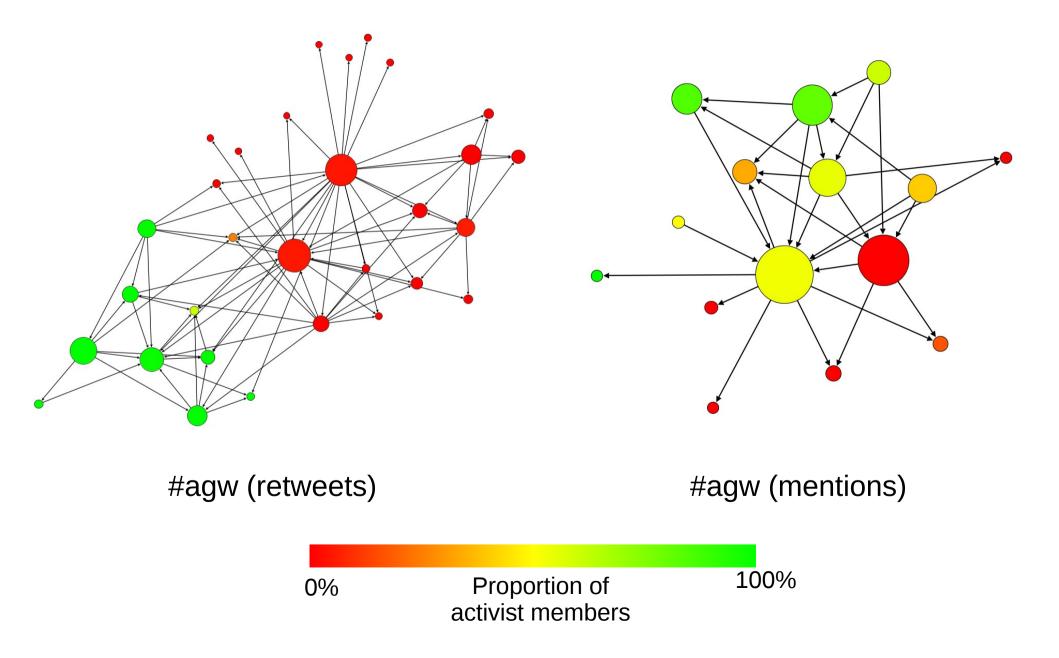
Composition of user communities



Apply community detection. For each group with >10 tagged users, calculate composition as frequency of activists. Back-calculate distribution of group compositions for each user. Compare to expected value for homogeneous distribution of user types.



"Echo-chambers" and "open forums"



Does group composition matter?

Homogeneous groups → polarisation, fragmentation, filter bubbles, extreme views

Heterogeneous groups → information spreading, diversity of choice, moderate views

Sentiment in mentions

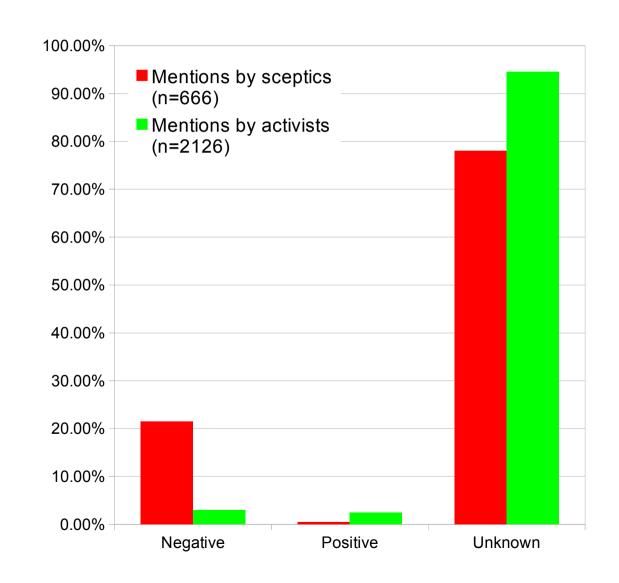
Positive: support, agreement, praise, confirmation

Neutral: neither positive nor negative

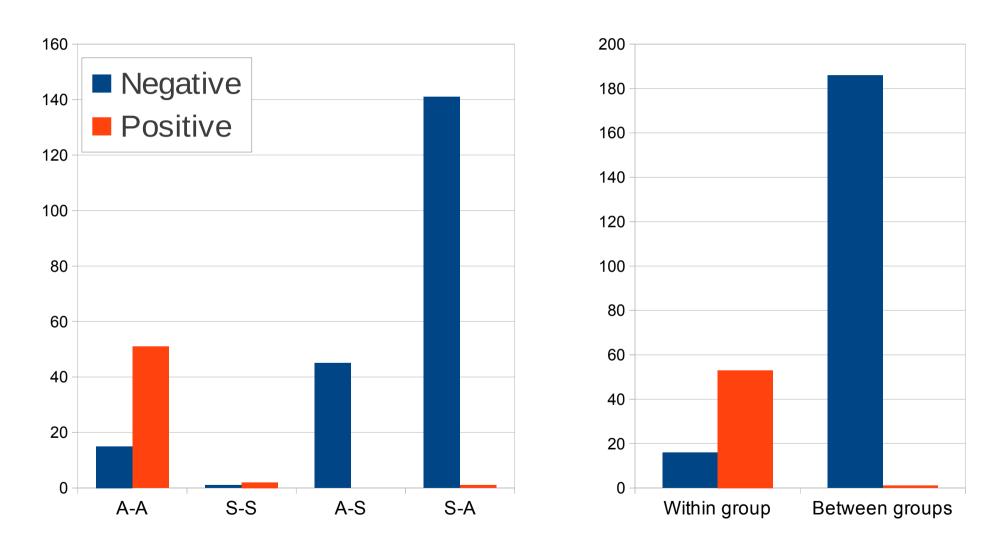
Negative: criticism, disagreement, abuse, undermining

Unknown: no sentiment could be distinguished

(Panel of 3 researchers, only unanimous decisions accepted.)



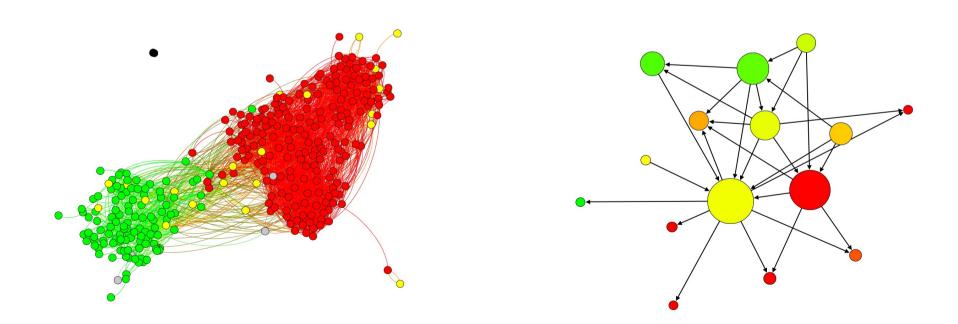
Sentiment within and between groups



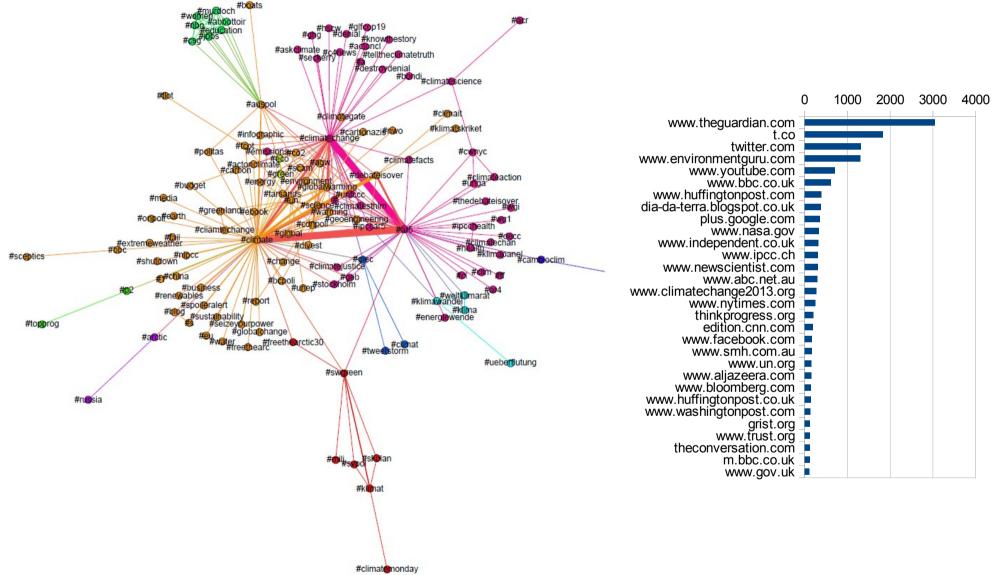
X-Y indicates mentions of group X by group Y.

Recap: Social network analysis

- Climate debate on Twitter is mostly characterised by homophily and polarised communities
- But some communities show diversity of viewpoints (albeit often with negative tone)

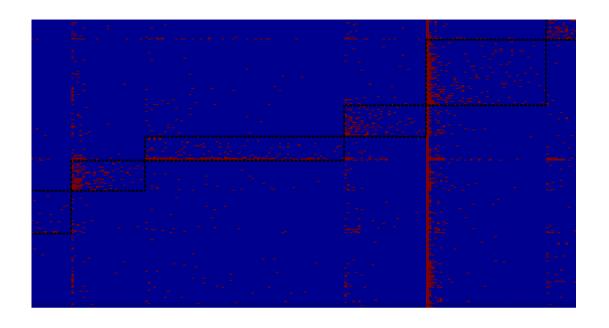


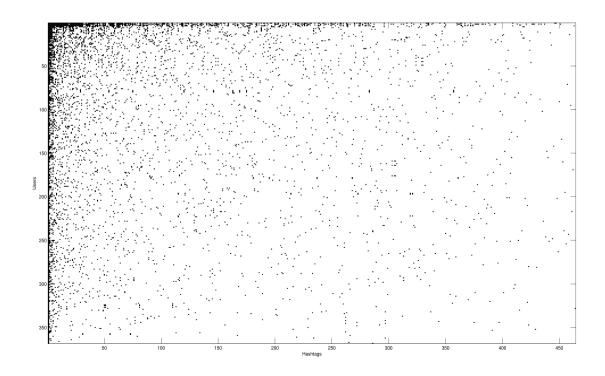
Content analysis



Hashtag associations and most-shared domains from tweets including #IPCC around AR5.

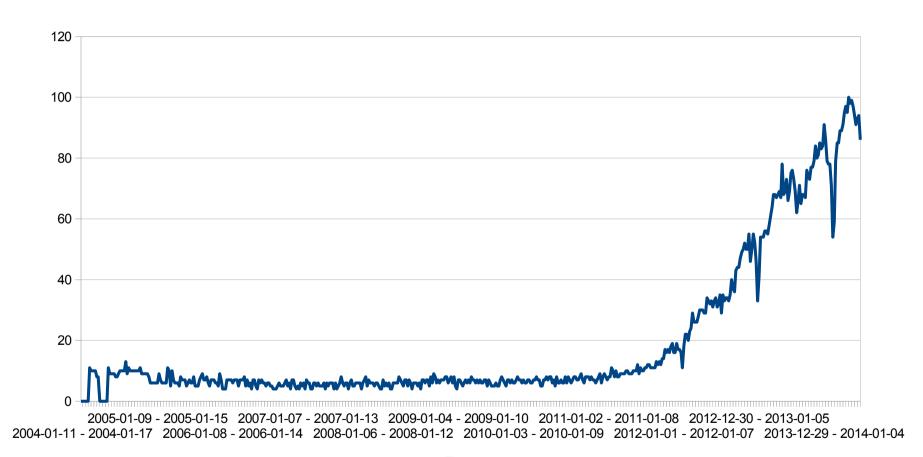
Bipartite hashtaguser association graphs





Big data analysis of "big data"

Term: "big data"



Search frequency (weekly)

Time

Source: Google Trends

Big data claims

- Produces very accurate predictions
- All data can be captured (n=all) → no need for sampling
- Causality/models/theory not needed

...and some counter-claims

- Big data produces many false positives
- Predictions can fail when environment changes
- In reality n=all is rarely possible
- Sample volume does not compensate for sample bias
- Causality and mechanism may not be needed for engineering, but are essential for science

FIGURE 13-2A: COMPETING SIGNALS WITH ONE SIGNAL HIGHLIGHTED

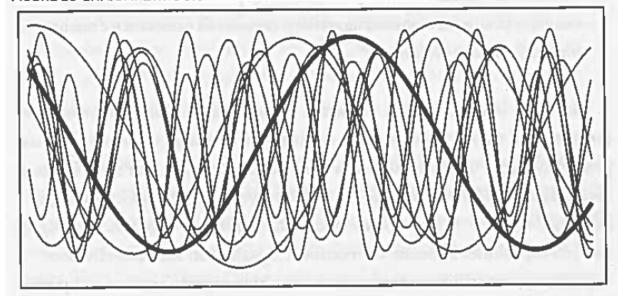
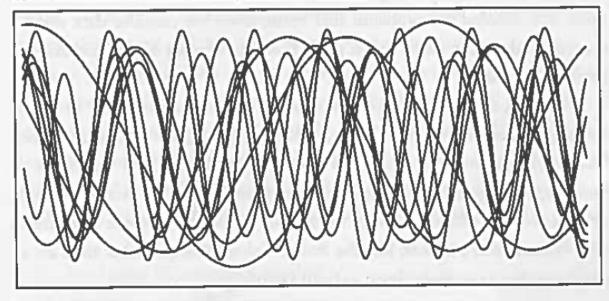


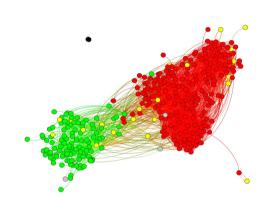
FIGURE 13-28: COMPETING SIGNALS, UNDIFFERENTIATED



Big data makes theory more important, not less.

Discussion

- Large and novel datasets are a byproduct of the digital revolution
- Creates scientific opportunities e.g. for understanding large-scale collective behaviour
- Example: Social network analysis of online climate change debate
- Next: Dynamics (networks and groups), other datasets (Tumblr, blogs), cross-media analysis (multiplex networks), machine learning (user categorisation).



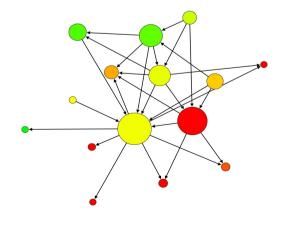


FIGURE C-2: THE PERCEPTION OF PREDICTABILITY, 1900-2012 80% Share of References in Academic Journals "Predictable" 70% "Unpredictable" 60% 50% 40% 30% 20% 10% 0% 19505 19605 19705 19105 19205 19305 19405 1802 1802 50002 50102 Decade

Quantifying homophily

- Homophily: prevalence of same-same interactions
- Bootstrap method:
 - Create ensemble of 10000 "random" networks
 - Preserve total number of edges
 - Preserve number of users in each class
 - Preserve in/out degree distributions of each user class
 - Compare observed network statistics to expectation from bootstrap ensemble
- Calculate z-score and p-value (null distribution is normal)

$$z = \frac{obs - mn}{sd}$$

Modularity

Modularity, Q, is a quality function for a network partition:

$$Q = \sum_{ij} \left[\frac{A_{ij}}{2m} - \frac{k_i k_j}{(2m)^2} \right] \delta(c_i, c_j)$$

where:

- $_{-}$ A $_{ij}$ =1 if there is an edge connecting nodes i and j, A $_{ij}$ =0 otherwise
- k, is the degree of node i
- m is the total number of edges
- δ is the Kronecker delta (returns 1 if arguments are equal, 0 otherwise)
- $-c_i$ is the assigned community for node i

Modularity is high when edges fall within (and not between) communities.